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Chapter 1

Intuitive Proofs

Principle 1.1 (The Pigeonhole Principle). If kn + 1 objects are placed into n
boxes, then at least one box has at least k + 1 objects.

Proposition 1.1. Given any 101 integers frrom 1, 2, 3, ..., 200, at least one of
these numbers will divide another.

Scratch Work. Since there are 101 items, we can consider the pigeon hole
principle with k = 1 and n = 100.

Let us consider the following boxes. Create a box for each of the odd numbers
1, 3, 5, ..., 199 and for any number x if x is of the form x = 2k ·m, where m is
odd and k >= 0, we can put x in the box m.

There are 100 odd numbers in the set so we have 100 boxes. And any two
numbers in a box only differ by 2k for some k. Thus, for any two numbers in
one box, the smaller number divides the larger one.

For any odd number larger than 101, it will be the only number in that box.

Proof. For each number n from the set 1, 2, 3, ..., 200, write it in the form of
n = 2k ·m where k >= 0 and m is an odd number.

Now, create a box for each odd number from 1 to 199. There will be 100
such boxes. For each of the given 101 integers,

If n = 2k ·m then put n in the box numbered m.

Since 101 integers are placed in 100 boxes, there must be at least one box
with more than 1 integer by 1.1.

Suppose the box m contains two numbers of the form n1 = 2k · m and
n2 = 2l ·m where without loss of generality k > l. Then we can show that

n1

n2
=

2k ·m
2l ·m

= 2k−l

Here, 2k−l is an integer since k > l, thus, n2 divides n1.
Thus, proved.
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Proposition 1.2. Suppose G is a graph with n ≥ 2 vertices. Then, G contains
two vertices which have the same degree.

Proof Idea. The possible degrees of a vertex is any number between 0 and
n− 1. Thus, there are n boxes for each possible value for the degree of a vertex
and n vertices.

We can show that at least one box must be empty. Therefore, we need to
put n vertices in n− 1 boxes and by The Pigeonhole Principe (1.1), there must
be at least two vertices in the same box, i.e., have the same degree.

We can show that both box 0 and box n− 1 cannot have a vertex because if
vertex v1 is in box n−1 then it has an edge connecting it to every other vertex.

Thus, every other vertex has an edge connecting it to v1 which implies that
every other vertex has at least a degree of 1 and box 0 must be empty.

If there is no vertex in box n− 1 then we have box n− 1 that is empty.
Thus, at least one box is empty in both scenarios.

Proof. Let G be a graph with n ≥ 2 vertices. Create boxes numbered from 0 to
n− 1.

Now, for each vertex, let us say it’s degree is d, then put that vertex in box
d. Let us take box 0 and n − 1. Both of these boxes are either empty or have
some vertex in them.

Case 1. Box n− 1 is empty.
Since box n − 1 is empty, we have n vertices being placed into n − 1 boxes.
Therefore, by The Pigeonhole Principle (1.1), there are at least one box with at
least two vertices.

Thus, there are at least two vertices with the same degrees.

Case 2. Box n− 1 is not empty.
The vertex in box n − 1 must have a degree of n − 1 which implies it has an
edge connecting to n− 1 vertices.
Therefore, all n vertices have at least one edge connecting them to another edge
and all n vertices have a degree of at least 1.

This implies that box 0 must be empty since all vertices have a degree of at
least 1.

Since box 0 is empty, there are n vertices placed into n− 1 boxes.
Therefore, by The Pigeonhole Principle (1.1), there are at least two vertices

in the same box and have the same degree.

Thus, proved.

Proposition 1.3. If you draw five points on the surface of an orange in marker,
then there is always a way to cut the orange in half so that four points ( or some
part of each of those points ) all lie on one of the halves.
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Scratch Work. There are two subtle statements in the propsition. First it
asserts that ”always a way to cut the orange in half so that...”. If doesn’t assert
that any such cut has this property.

Second, it is important that we say ”or some part of each of those points”.
When you use a marker to make the points, the points are big enough that when
you slice through any point, part of the point appears on both halves.

Classical Geometry Theorem. Given any two points on the sphere, there
is a great circle that passes through those two points.

Proof. Take 2 out of 5 given points. By Classical Geometry Theorem, there is
a great circle passing through these points. Thus, this great circle divides that
sphere in two halves.

The remaining three points are placed among these two halves. Thus, by
The Pigeonhole Principle (1.1), there are at least two points on one of the havles.

Adding the two initially chosen points to both halves, we have one half with
atleast four points.

Hence, proved.
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Exercises

Problem 1.1. Skipped.

Problem 1.2. Explain the error in the following ”proof” that 2 = 1.
Let x = y. Then,

x2 = xy (1.1)

x2 − y2 = xy − y2 (1.2)

(x+ y)(x− y) = y(x− y) (1.3)

x+ y = y (1.4)

2y = y (1.5)

2 = 1 (1.6)

Solution. Since x = y, x− y = 0 and therefore, we cannot divided by x− y in
step 3 to get x+ y = y from (x+ y)(x− y) = y(x− y). Thus, solved.

Problem 1.3. Suppose that m and n are positive odd integers. Using 2 × 1
dominos,

(a) Does there exist a perfect cover of the m× n chessboard?
(b) If I remove 1 square from the m × n chessboard, will it have a perfect

cover?

Solution (a). In this case, there are m× n cells on the board which is an odd
number. Since each domino covers only 2 cells, the total number of cells covered
will always be even.

Hence, no perfect cover exists.

Scratch Work (b). Let us take 3 × 3 chessboard. There are 9 cells on the
board. Without loss of generality, let us say there are 4 white cells and 5 black
cells.

Since a domino always covers 1 white and 1 black cell, the number of white
and black cell must be equal for a perfect cover.

Let us remove a black cell from the above chessboard. Now there are 4 white
cells and 4 black cells.

Checking all 5 black squares for removal, we find that we have a cover in
every case.

Solution (b). Let us assume that the board has x white cells and x+ 1 black
cells. Note: If it is not the case, we can always swap the colors and have the
same setup.

Since each domino must cover exactly 1 white and 1 black cell, we must
remove a black cell to have a perfect cover.

In this scenario, all the corners will have black cells since there are more
black cells than white.

Now, the question is, whether we can remove any black cell.
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Lemma 1.1. For every chessboard of size m× n, there exists a cover if either
m or n is even.

Proof. Let us assume that m is even. We can always turn the board if n is even.
For every column, we have an even number of cells in that column as m is

even. Hence, we can cover that column with dominos.
Hence, proved.

Let us say we removed a black cell from row r. Now, there are two cases:

Case 1. r is odd.
In this case, we can divide the remaining chessboard into (r − 1) × n and

(m− r)× n and cover them by Lemma 1.1.
Note: In case r = 1 or r = m, we only have one remaining part. The second

part is empty and thus, requires no cover.
Since the corners are black, the left most cell of every odd row must be black

because the colors are alternating. That is, all the cells in first column and rows
1, 3, 5, ...,m must be black.

Since r is odd, the left most cell in it must be black. Thus, the columns
containing black cells in row r are odd, i.e., cells in columns 1, 3, 5, ..., n and row
r are black.

Thus, if we remove any black cell from row r we will have divided the row
into two even sized pieces, which can be covered by the dominos by Lemma 1.1.

Case 2. r is even.
In this case, we can take rows r − 1, r, r + 1 and divide the remaining chess

board in (r − 2)× n and (m− r − 1)× n and cover them by Lemma 1.1.
Since r is even, all the cells in row r and columns 2, 4, 8, ..., n− 1 are black.
Let us say we remove the cell in column c. Now, we can take column c− 1, c

and c+ 1, and divide the rest of cells into chess boards of sizes (c− 2)× 3 and
(n− c− 1)× 3. Since c is even, therefore, c− 2 and n− c− 1 are even as well.

Thus, we can cover these boards using Lemma 1.1.
Now, for the remainig 3 × 3 board without its center, we can cover it like

this:

Hence, proved.

Problem 1.4. The game Tetris is played with five different shapes – the five
shapes that can be obtained by piecing together four squares.

5



For the questions below, we also allow these pieces to be ”flipped over”.
(a) Is it possible to perfectly cover a 4 × 5 chessboard using each of these

shapes exactly once? Prove that it is impossible, or show by example that it is
possible.

(b) Is it possible to perfectly cover an 8 × 5 chessboard using each of these
shapes exactly twice? Prove that it is impossible, or show by example that it is
possible.

Scratch Work. Let’s color the chessboard in black and white. Here, we can
see that all the shapes will cover 2 black cells and 2 white cells except the third
shape.

The third shape will cover either 3 black and 1 white cell or 1 black and 3
white cells.

Therefore, if we use each shape exactly once, we will get either get a total
of 11 black and 9 white cells or 9 black and 11 white cells.

Solution (a). Let’s assume that it is possible to cover a 4× 5 chessboard using
these shapes exactly once.

The chess board has exactly 10 black and 10 white cells in it. Each shape
will take up exactly 2 white and 2 black cells except the third shape.

The third shape will either take up 3 black and 1 white cell or 3 white or
1 black cell. This is because all adjacent cells must be different color so if the
center of the third shape is white, all the rest 3 cells of that shape must be black
and vice versa.

Let’s place each shape one by one.
After placing the first shape, we will have 8 black and 8 white cells.
After placing the second shape, we will have 6 black and 6 white cells.
After placing the fourth shape, we will have 4 black and 4 white cells.
After placing the fifth shape, we will have 2 black and 2 white cells.

Now, we don’t have enough white or black cells to place the third shape.
This is a contradiction. Therefore, it is impossible to cover a 4 × 5 chessboard
using each of these shapes exactly once.

Hence, proved.

Solution (b). Giving an example:
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Hence, proved.

Problem 1.5. If I remove two squares of different colors from an 8× 8 chess-
board, must the result have a perfect square?

Solution. TODO

Problem 1.6. If I remove four squares – two white, two black – from an 8× 8
chessboard, must the result have a perfect cover?

→ If you believe a perfect cover exists, justify why.
→ If you belive a perfect cover does not need to exist, give an example of

four squares that you could remove for which the result does not have a perfect
cover.

Solution. TODO

Problem 1.7. In chess, a knight is a piece that can move two squares vertically
and one square horizontally, or two squares horizontall and one square vertically.

A knight can legally move to any square provided there is not another piece
on that same square.

(a) Suppose there is a knight on every square of a 7 × 7 chessboard. Is it
possible for every one of those knights to simultaneously make a legal move?

(b) Suppose there is a knight on every square of a 8 × 8 chessboard. Is it
possible for every one of those knights to simultaneously make a legal move?

Solution (a). Let us color the chessboard such that there are 24 white squares
and 25 black squares without loss of generality.

In one move, a knight on a white square moves to a black square and vice-
verse.

Since there are more black squares than white squares, we cannot move all
the knight simultaneuosly such that all of them occupy different squares after
the move by Principle 1.1.

Solution (b). In the first two rows of the 8 × 8 chessboard, there are 8 white
squares and 8 black squares. We can pair them up like so:
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This pattern can be repeat by every two rows of the board. And the knights
in these places can swap positions.

Hence, proved.

Problem 1.8. Prove that if one chooses n+1 numbers from {1, 2, 3, ..., 2n}, it
is guaranteed that two of the numbers that they choose are consecutive.

Also, before the proof, write 2 example for n = 3, n = 4 and n = 5.

Scratch Work. For n = 3, we can choose 4 numbers from {1, 2, 3, 4, 5, 6}. Let
them be 1, 3, 5, 6. Here, 5 and 6 are consecutive.

For n = 4, we can choose 5 numbers from {1, 2, 3, 4, 5, 6, 7, 8}. Let them be
1, 3, 5, 7, 8. Here, 7 and 8 are consecutive.

For n = 5, we can choose 6 numbers from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Let
them be 1, 3, 5, 7, 9, 10. Here, 9 and 10 are consecutive.

Solution. Let us define the n boxes numbered 1 to n. For each selected x, if
x = 2k − 1 or x = 2k, put it in the box k.

Thus, box k will only contain two numbers: 2 · k − 1 and 2 · k. Both these
numbers are consecutive.

Since there are n+ 1 selected numbers atleast two numbers must be in the
same box by Principle 1.1 which implies that they are consecutive.

Hence, proved.

Problem 1.9. Assume that n is a positive integer. Prove that if one selects
any n+1 numbers from the set {1, 2, 3, ..., 2n}, then two of the selected numbers
will sum to 2n+ 1.

Solution. Let us define n boxes numbered 1 to n such that box i contains the
numbers i and 2n+ 1− i.

Thus, we will get boxes with numbers (1, 2n), (2, 2n− 1), ...(n, n+ 1). Note
that the numbers in a box add up to 2n+ 1.

Now, since there are n+1 selected numbers atleast two numbers must be in
the same box by Principle 1.1 which implies that they add up two 2n+ 1.

Problem 1.10. Explain in your own words what the general pigeonhole princple
says.

Solution. If there are n objects that are placed into m boxes then there is
atleast one box with atleast ⌊ n

m⌋ items in it.

Problem 1.11. Prove that there are atleast two U.S. residents that have the
same weight when rounded to the nearest millionth of a pound.
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Solution. A quick google search tells us that there are only 3.2 million people
over 300 pounds in the U.S. and the population of the U.S. is 340 million people.

Thus, there are more than 330 million people that weigh between 0 and 300
pounds.

Let us create box for each weight with a millionth of a pound of precision.
This will give us 300 million boxes each denoting a weight with a precision of a
millionth of a pound.

Since there are more than 300 million people in the U.S. who weigh between
0 and 300 pounds, by Principle 1.1, we can conclude that there are atleast two
people with the exact same weight when rounded to a millionth of a pound.

Problem 1.12. Determine whetehr or not the pigeonhole principle guarantees
that two students at your school have the exact three leter initials.

Solution. My school had 1000 students in each year so a total of 4000 students.
There are 26 · 26 · 26 = 17576 unique three letter initials.
Therefore, the pigeonhole principle doesn’t guarantee that two students at

my school have the same three letter initial.

Problem 1.13. Find your own real-world example of the pigeonhole principle.

Solution. There are 10, 000 engineers at my workplace. But there are only 366
days in the year.

Therefore, atleast ⌊10000/366⌋ = 27 employees have the exact same joining
anniversary.

Definition. Two integers m and n are said to be relatively prime if there is no
integer larger than 1 which divides both m and n.

This definition will be used in the following exercise.

Problem 1.14. Prove that if one chooses 31 numbers from the set {1, 2, 3, ..., 60},
that two of the numbers must be relatively prime.

Solution. We can use the same method as last one. We can create 30 boxes
where each box k will contain the numbers 2k − 1 and 2k. Thus, we will get
boxes that contain the numbers (1, 2), (3, 4), (5, 6)..., (59, 60).

Here, it is obvious that both numbers in a box are relatively prime.
Thus, putting 31 selected numbers in these boxes, we will get atleast one

box which has atleast two numbers.
Therefore, there are two numbers that are relatively prime.
Hence, proved.

Problem 1.15. Assume that n is a positive integer. Prove that if one chooses
n+1 distince odd integers from {1, 2, 3, ..., 3n}, then atleast one of these numbers
will divide another.

Also, before your proof, check all possible selection of 4 odd numbers from
{1, 2, 3, ..., 9}, and for each selection locate two of the numbers for which one
divdes the other.
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Scratch Work. The following are the selections:

• {1, 3, 5, 7} : 1 divides 3.

• {1, 3, 5, 9} : 1 divides 3.

• {1, 3, 7, 9} : 1 divides 3.

• {1, 5, 7, 9} : 1 divides 5.

• {3, 5, 7, 9} : 3 divides 9.

Since there are ⌊ 3n+1
2 ⌋ odd numbers in the given setand we are choosing

n+ 1, we need to put these numbers in n boxes.
Now, we want to choose n boxes such that in each box the smaller number

divides the larger number or the box has only one number.
Let us say that for any selected number x, it can be written in the format

x = 3k ·m where k ≥ 0 and m is not divisible by 3.
Now there are two cases:
Case 1. n is odd.
Now if n is odd, The odd numbers are {1, 3, 5, 7, 9, ..., 3n}. There are 3n+1

2
odd numebrs out of which n+1

2 are divisible by 3. Now,

3n+ 1

2
− n+ 1

2
=

2n

2
= n

Thus, there are n numbers not divisble by 3.
Case 2. n is even.
Now, the odd numbers are {1, 3, 5, 7, 9, ..., 3n−1}. There are 3n

2 odd numbers
out of which n

2 are divisble by 3.
Therefore, n numbers are not divisble by 3.
Thus, if we create a box of n numbers that are not divisble by 3. And place

n+ 1 numbers in those boxes, such that if x = 3k ·m then put x in box m.
Then by Principle 1.1, we will have atleast one box with two numbers in it.
Let us say x1 = 3k1 ·m and x2 = 3k2 ·m are both in box m such that k1 < k2.

Then,
x1

x2
=

3k1 ·m
3k2 ·m

= 3k1−k2

Since k1 > k2, we have shown that x2 divides x1.
Thus, if we have two numbers in the same box, the smaller one divides the

larger one.
With that, let us move on to the solution.

Solution. There are two cases that we define:
Case 1. n is even.
In this case, the odd numbers are as follows: {1, 3, 5, ..., 3n−1}. By counting

them, we can say that there are 3n
2 odd numbers.

The numbers in the above set that are divisible by 3 are as follows: {3, 9, 15, ..., 3n−
3}. This ends at 3n − 3 because 3n is even. This set contains all the numbers
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from the set {1, 3, 5, ..., n− 1} multiplied by 3. Thus, by counting them, we get
that there are n

2 numbers divisble by 3.
Subtracting the first two counts, we get,

3n

2
− n

2
=

2n

2
= n

Thus, there are n numbers in the set of odd numbers between 1 to 3n such that
they are not divisble by 3.

Case 2. n is odd.
Since n is odd 3n is also odd.
In this case, the odd numbers are as follows: {1, 3, 5, ..., 3n}. By counting

them, we can say that there are 3n+1
2 odd numbers.

The numbers in the above set that are divisible by 3 are as follows: {3, 9, 15, ..., 3n}.
This set contains all the numbers from the set {1, 3, 5, ..., n} multiplied by 3.
Thus, by counting them, we get that there are n+1

2 numbers divisble by 3.
Subtracting the first two counts, we get,

3n+ 1

2
− n+ 1

2
=

2n

2
= n

Thus, there are n numbers in the set of odd numbers between 1 to 3n such that
they are not divisble by 3.

Hence, we have proved that for any n, the count of odd numbers not divisble
by 3 in the set {1, 2, 3, ..., 3n} is n.

Now, let us take any number x from the set of selected n+ 1 numbers. We
can write x in the form of x = 3k · m where k ≥ 0 and m is an odd number
which is not divisble by 3.

Since x is an odd number, therefore, all its factors must be odd as well. This
implies that we can take out all the factors that are 3 and will be left with an
odd number m.

Now, let us define n boxes for each odd number in {1, 2, 3, ..., 3n} which is
not divisible by 3.

Now, we can put all n+ 1 numbers of the format x = 3k ·m in box m since
m is not divisble by 3.

By Principle 1.1, since there are n boxes and n+ 1 numbers, there must be
a box m with atleast two numbers.

Let us say that the numbers are x1 = 3k1 · m and x2 = 3k2 · m such that
k1 > k2. ( Note: Since they are in the same box they have the same m. )

Now, we can show that,

x1

x2
=

3k1 ·m
3k2 ·m

= 3k1−k2

Since k1 > k2, we can say that x1 is divisble by x2.
Hence, proved.

Problem 1.16. Give an example of 100 numbers from {1, 2, 3, ..., 200} such
that none of your selected numbers divides any of the others.
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Solution.
{101, 102, 103, ..., 200}

In the above set, none of the numbers divide another since any multiple for a
number greater than 100 will be greater than 200.

Problem 1.17. Prove that any set of seven integers contains a pair whose sum
or difference is divisible by 10.

Also, give three examples of this before your proof. Have your sets contain
a diverse set collection of integers.

Scratch Work. Examples:

• {1, 4, 5, 9, 19, 38, 42} : 38 + 42 = 80 is divisble by 10.

• {786, 124, 213, 468, 109, 309, 5876} : 786 + 124 = 910 is divisble by 10.

• {16, 27, 12, 70, 29, 45, 74} : 16 + 74 = 90 is divisble by 10.

Solution. Let us define 6 boxes as follows: (0), (1, 9), (2, 8), (3, 7), (4, 6), (5).
Now, for each selected number we take its remainder when divided by 10.

For negative numbers, we can add 10 until the remainder isn’t positive.
Now, since there are 7 boxes atleast one box must have 2 or more numbers

by Principle 1.1
Now, we can show that we any box contains two or more numbers then those

two numbers must either add or subtract to give a number divisible by 10. We
have the following cases for the box that contains two or more numbers:

Case 1. Box is (0).
Both numbers are divisble by 10 so their sum is also divisible by 10.

Case 2. Box is one of (1, 9), (2, 8), (3, 7), (4, 6).
If both numbers have the same remainder then their difference is divisble by 10.
If they have different remainders, then in all the cases, their remainders will add
to make 10, so their sum will be divisible by 10.

Case 3. Box is (5).
Here, they both have a same remainder so their difference will be divisible by
10.

Hence, proved.

Problem 1.18. Prove that if one chooses any 19 points from the interior of a
6× 4 rectangle such that no three points are colinear, then there must exit four
of these points which form a quadilateral of area at most 4.

Solution. The area of the rectangle is 24. Let us divide it into 6 rectangles of
are 4 and dimensions 1× 4. And let us define that if a point lies on a line that
is shared between two rectangles then that point is part of the upper rectangle
that has a line as its edge.

Since we are choosing 19 points and we have 6 rectangles that they can
be placed in. By Principle 1.1 ( The Pigoenhole Principle ), there must be a
rectangle with at least 4 points.
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Since these four points lie inside the rectangle of an areaa 4 and no three of
them are colinear, therefore, they form a quadilateral and their area is at most
4.

Hence, proved.

Problem 1.19. Assume that 9 points are choses from the right triangle with
base and height of 2. Assume that no three points are colinear. Prove that there
exists three points which form a triangle whose area is less than 1

2 .

Solution. Here, the total area of the triangle is 2.
In this, the base is 2, which can be divided into 4 segments of 1

2 each and
we can connect them to the opposite vertex.

Here, we have 4 triangles with the same base and height. Note: Height
is same because they will all have the same perpendicular from the opposite
vertex. Thus, the area of these triangles is 1

2 .
Now, selecting 9 points that can be placed in these trianges, we will have

atleast 1 triangle with 3 or more points by Principle 1.1.
Since no 3 points are colinear, these 3 points form a triangle within another

triangle of area 1
2 . Thus, the area of this triangle is less than or equal to 1

2 .
The area is equal to 1

2 only when the three points lie on the vertices of the
triangle that they contain in.

Problem 1.20. At a party, each person is acquainted with a certain number of
others at the party and is a stranger to everyone else. Suppose there are n ≥ 2
people at a party. Prove that atleast two people at this party have the same
number of acquaintances at the party.

Note: Being Acquaintances is symmetric. Every person is acquainted with
atleast one person at the party.

Solution. Since every person is acquainted with atleast one person at the party
and no person can obviously be acquainted with themselves, therefore, the num-
ber of acquaintances of each person must lie between 1 and n− 1.

Let us create n− 1 boxes and put each person in the box with the number
of acquaintances that they have.

By Principle 1.1, since there are n people and n− 1 boxes, there is atleast 1
box with atleast 2 people in it.

Therefore, there are atleast 2 people at the party with the same number of
acquaintances.

Problem 1.21. (a) Determine the population of your hometown and how many
non-balding people in your homwtown, if any, are guaranteed to have the same
number of hairs on their head, according to the pigeonhole principle.

(b) Determine, as best you can, the number of students who attended your
high school while you were a senior. Then, determine how many of them, if any,
are guaranteed to have the same birthday according to the pigeonhole principle.

Solution. Not Interested. Not Valueable.
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Problem 1.22. The following conjectures are all false. Prove that they are
false by finding a counter example to each.

(a) Conjecture 1: If x and y are real numbers, then |x+ y| = |x|+ |y|.

Solution. x = 1, y = −1 =⇒ |x+ y| = 0 ̸= |x|+ |y| = 2

(b) Conjecture 2: If x is a real number, then x2 < x4.

Solution. x = 0.1 =⇒ x2 = 0.01, x4 = 0.00001 =⇒ x2 > x4

(c) Conjecture 3: Suppose x and y are real numbers. If |x + y| = |x − y|,
then y = 0.

Solution. x = 0, y = 1, |x+ y| = 1 = |x− y|

Problem 1.23. Suppose you deal a pile of cards, face down, from a shuffled
deck of cards ( only 13 cards of each suit ). How many must you deal out until
you are guaranteed...

(a) five of the same suit?

Solution. By Principle 1.1, we have n = 4 boxes as suits. We want atleast
k + 1 = 5( =⇒ k = 4) in some box/suit.

Thus, we must atleast have kn+ 1 = 17 cards.

(b) two of the same rank?

Solution. By Principle 1.1, we have n = 13 boxes as ranks. We want atleast
k + 1 = 2( =⇒ k = 1) in some box/rank.

Thus, we must atleast have kn+ 1 = 14 cards.

(c) three of the same rank?

Solution. By Principle 1.1, we have n = 13 boxes as ranks. We want atleast
k + 1 = 3( =⇒ k = 2) in some box/rank.

Thus, we must atleast have kn+ 1 = 27 cards.

(d) four of the same rank?

Solution. By Principle 1.1, we have n = 13 boxes as ranks. We want atleast
k + 1 = 4( =⇒ k = 3) in some box/rank.

Thus, we must atleast have kn+ 1 = 40 cards.

(e) two of one rank and three of another?

Solution. For 3 cards of the same rank, we need atleast 40 cards.
In this case, we will already have another rank having two cards. In the

worst case, scenario, there will be 2 cards in each rank/box for us to get to 40
cards for 3 cards in some rank/box.

Thus, we need atleast 40 cards.

Problem 1.24. Determine the U.S. population at the time you are reading this.
(a) Does the pigeonhole principle guarantee that 1 million U.S. residents

have the same birthday?
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Solution. There are 340 million people in the U.S. There are 366 days in the
year.

Thus, n = 366 and k = 1000000 which means we only need 366 million and 1
people ( kn+1 ) for atleast one day where 1 million people have thier birthday.

We clearly have more people than neeeded for this to be guaranteed. Hence,
yes.

(b) If the principle does not guarantee this, how many people are neede until
that miltsone is reached? If the USA grows by 2 million people per year, in what
year will this occur?

Solution. The current population does guarantee it.

Problem 1.25. Imagine a friend gives you a deck of cards (a standard 52-card
deck) and lets you shuffle it a few times. They then ask you to slowly deal out
the cards, one at a time, into a new pile on the table. The entire time the cards
are face-down, so they have no idea which cards you are deailing.

At a certain point thisn procedure, they ask you to stop, and declare with
confidence that the two stacks (hand and table) are in perfect balance. They say
the number of red cards in the stack in your hand is equal to the number of black
cards in the stack on the table. They let you count, and sure enough, they were
correct.

There were no gimmicks in this procedure – no trick cards or hidden cameras
or outside help. How did your friend do it?

Solution. There are 23 red and black cards each in a standard deck. Let us
divide the deck randomly into two decks of 23 each and say that the first deck
has r red cards and b black cards.

Now, since there are 23 red and black cards each, we have 23 − r red and
23− b black cards in the second deck.

Now, since each deck size is 23, we know that

r + b = 23 =⇒ r = 23− b

Thus, number of red cards, r, in the first deck is the same as number of black
cards, 23− b, in the second deck.

Thus, he only had to wait till I had dealt 23 cards and stop me to make the
claim.

Problem 1.26. An alien creature has three legs, and on each o fhis three alien
feet he wears an alien sock. Suppose he just washed n triplets of alien socks (
3n individual socks), and each triplet is a different color. If this alien pulls out
his alien socks out of his alien dryer one-at-a-time, how many must he pull out
to be guaranteed to have a matching triplet?

Solution. Here, we have n colored triplets or boxes. We want atleast one
box/color to have atleast k + 1 = 3 socks which implies k = 2

Thus, by Principle 1.1, we need atleast kn+ 1 = 2n+ 1 socks.
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Problem 1.27. A magic square is an n×n matrix where teh sum of the entries
in each row, column and diagonal equal the same value.

An anitmagic square is an n × n matrix where each row, column and
diagonal sums to a distinct value.

Prove that, for every n, there does not exist an n×n antimagic square where
each entry is −1, 0 or 1.

Solution. For each n × n matrix with entries −1, 0 or 1, the sum of its rows,
columns and diagonals can only be between −n and n.

Let us create 2n+ 1 boxes labelled from −n to n.
Now, there are n rows, n columns and 2 diagonals. Therefore, there are

2n+ 2 sums that need to be distinct.
But each sum must be placed in one of the 2n + 1 boxes. Therefore, by

Principle 1.1, there must be a box with two sums in it. This implies that the
square cannot have distinct sum of rows, columns and diagonals.

Thus, the antimagic square of size n×n with entries −1, 0 or 1 is not possible.
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Chapter 2

Direct Proofs

Definition 2.1. A nonzero integer a is said to divide an integer b if b = ak for
some integer k. When a divides b, we write a | b and when a does not divide b,
we write a ∤ b.

Proposition 2.1. Let a, b and c be intgers. If a | b and b | c, then a | c.

Theorem 2.1 (The Division Algorithm). For all integers a and m witht m > 0,
there exist unique integers q and r such that

a = mq + r

where 0 ≤ r < m.

Definition 2.2. Let a and b be integers. If c | a and c | b, then c is said to be
a common divisor of a and b.

The greatest common divisor of a and b is the largest d such that d | a and
d | b. This number is denoted gcd(a, b).

Theorem 2.2 (Bezout’s Identity). If a and b are positive integers, then there
exist integers k and l such that

gcd(a, b) = ak + bl

Scratch Work. Let’s jot down an example. Let a = 12 and b = 20, making
gcd(a, b) = 4. Then indeed we get,

4 = 12 ∗ 2 + 20 ∗ (−1)

Or maybe
4 = 12 ∗ (−3) + 20 ∗ 2

Proof. Assume a and b are fixed positive integers. Then the expression ax+ by
can take infinitely many integer values for any integers x and y. It can even be
0 for x = y = 0.
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Let d be the smallest positive integers that the expression ax+ by can take.
And let k and l be integers for which

d = ak + bl (2.1)

Now, we need to prove that d = gcd(a, b). We will do this in two parts.
First, we will show that d is a common divisor of a and b. Then, we will show
that d = gcd(a, b).

Part 1: d is a common divisor of a and b.
Since d > 0, therefore, by Theorem 2.1, there exists integers q and r such

that
a = dq + r

with 0 ≤ r < d. By rewriting this, we get,

r = a− dq (2.2)

= a− (ak + bl)q (2.3)

= a− akq − blq (2.4)

= a(1− kq) + b(−lq) (2.5)

Since 1− kq and −lq are integers, we have found another expression of the
form ax + by. But since 0 ≤ r < d and d was the smallest posititve integer of
the form ax+ by then it must be true that r = 0.

Therefore, we have the equation a = dq+ r which simplifies to a = dq. And
thus, by Definition 2.1, d | a.

Similarly, we can also prove that d | b. Thus, d is a common divisor of a and
b.

Part 2: d is the greatest common divisor of a and b.
Suppose that d′ is another common divisor of a and b. Here, we must show

that d′ ≤ d for all such d′.
By Definition 2.1, we have

a = d′m and b = d′n

for some integers m and n. Then, applying the above to Equation 2.1,

d = ak + bl (2.6)

= d′mk + d′nl (2.7)

= d′(mk + nl) (2.8)

=⇒ d′ =
d

mk + nl
(2.9)

Since mk + nl is an integer and d is positive, this implies that d′ ≤ d.
Note: If mk + nl is negative then d′ is negative and it is trivial that d′ ≤ d.

If mk + nl is positive then d′ = d
mk+nl implies that d′ ≤ d.
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Thus, d is in fact the greatest common divisor of a and b, i.e.,

gcd(a, b) = d = ak + bl

Hence, proved.

Definition 2.3. For integers a, r and m, we say that a is congruent to r modulo
m, and we write a ≡ r (mod m), if m | (a− r).

Proposition 2.2 (Properties of Modular Arithmetic). Assume that a, b, c, d
and m are integers, a ≡ b (mod m) and c ≡ d (mod m). Then,

1. a+ c ≡ b+ d (mod m)

2. a− c ≡ b− d (mod m)

3. a · c ≡ b · d (mod m)

Definition 2.4. An integer p ≥ 2 is prime if its only positive divisors are 1 and
p. An integer p ≥ 2 is composite if it is not prime.

Equivalently, n is composite if it can be written as n = st, where s and t are
integers and 1 < s, t < n.

Lemma 2.1. Let a, b and c be integers, and let p be a prime.

1. If p ∤ a, then gcd(p, a) = 1.

2. If a | bc and gcd(a, b) = 1, then a | c.

3. If p | bc, then p | b or p | c.

Proposition 2.3 (Modular Cancellation Law). Le a, b, k and m be integers,
with k ̸= 0. If ak ≡ bk (mod m) and gcd(k,m) = 1, then a ≡ b (mod m).

Scratch Work. Here, we have the following:

ak ≡ bk (mod m) (2.10)

=⇒ (ak − bk) = mq (2.11)

=⇒ (a− b)k = mq (2.12)

=⇒ k | mq (2.13)

By Lemma 2.1(2), since gcd(k,m) = 1, we get k | q, therefore, q = kl for some
integer l.

(a− b)k = mkl =⇒ a− b = ml =⇒ m | (a− b) =⇒ a ≡ b (mod m)

Proof. Since ak ≡ bk (mod m), by Definition 2.3 and 2.1, we have, ak−bk = mp
for some integer p.

ak − bk = mp =⇒ (a− b)k = mp =⇒ k | mp
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Now, since gcd(k,m) = 1, by Lemma 2.1(2), we get k | p =⇒ p = kq for some
integer q.

(a− b)k = mp =⇒ (a− b)k = mkq =⇒ (a− b) = mq =⇒ m | (a− b)

Now, by Definition 2.3, we can say that a ≡ b (mod m).
Hence, proved.

Theorem 2.3 (Fermat’s Little Theorem). If a is an integer and p is a prime
which does not divide a, then

ap−1 ≡ 1 (mod p).

Scratch Work. The all-important observation is the following, which we ex-
plain through the example a = 4 and p = 7. Consider two sets:

{a, 2a, 3a, 4a, 5a, 6a} and {1, 2, 3, 4, 5, 6}

In this example, since a = 4, this is the same as

{4, 8, 12, 16, 20, 24} and {1, 2, 3, 4, 5, 6}

These look like completely different sets. But look what happens when you
consider each of the numbers module p; the second set stays the same but the
numbers in the first set change.

{4, 1, 5, 2, 6, 3} and {1, 2, 3, 4, 5, 6}

Now, these two sets are the same. Since the order doesn’t matter in multiplica-
tion, this means that

a · 2a · 3a · 4a · 5a · 6a ≡ 1 · 2 · 3 · 4 · 5 · 6 (mod 7)

Proof. Assume that a is an integer and p is prime which does not divide a. We
begin by proving that when taking module p

{a, 2a, 3a, ..., (p− 1)a} ≡ {1, 2, 3, ..., p− 1} (mod p)

To do this observe that set on the right has every module except 0. Thus, if
we can show that no number on the left hand side is 0 module p and all of them
are unique module p, then both sets must have the same elements module p.

Step 1. No element in the set {a, 2a, 3a, ..., (p−1)a} is congruent to 0 module
p.

Let us take an element ia from the set and assume that it is congruent to 0
modulo p. By Definition 2.3, we get that p | ia.

Since p ∤ a, by Lemma 2.1, we get that gcd(p, a) = 1.
By Lemma 2.1(2), we get that p | i. This is a contradiction since for all

i ∈ {1, 2, 3, ..., p− 1}, p ∤ i.
Thus, our initial assumption that ia ≡ 0 (mod p) must be wrong.
Hence, proved.
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Step 2. All elements in the set {a, 2a, 3a, ..., (p− 1)a are unique modulo p.
Let us take two elements ia and ja from the above set such that ia ≡ ja

(mod p).
Since gcd(a, p) = 1 as shown before, by Proposition 2.3, we get that i ≡ j

(mod p).
Since i and j are in the set {1, 2, 3, ..., (p − 1)}, we can say that i = j since

no two elements in the set are congruent to each other module p.
Thus, we get that ia ≡ ja (mod p) =⇒ i = j and that all the elements are

unique in the given set module p.
These two steps complete the proof that

{a, 2a, 3a, ..., (p− 1)a} ≡ {1, 2, 3, ..., p− 1} (mod p)

Now, since the order doesn’t matter in multiplication we can say that

a · 2a · 3a · ... · (p− 1)a ≡ 1 · 2 · 3 · ... · (p− 1) (mod p)

Since for each i such that 2 ≤ i ≤ p − 1, we know that p ∤ i, we get that
gcd(p, i) = 1. Therefore, by Proposition 2.3, we get

a · a · a · ... · a︸ ︷︷ ︸
p−1 times

≡ 1 (mod p)

=⇒ ap−1 ≡ 1 (mod p)

Hence, proved.

Theorem 2.4 (Euler’s Theorem). If a and N are positive integers which are
relatively prime then

aϕ(N) ≡ 1 (mod N)
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Exercises

Problem 2.1. List 5 skills that are important for someone to be successful in
a college math class. Which skills seem most important for an upper-division
math class? Which skills do you want to work to improve?

Solution. Not Interested.

Problem 2.2. The following are the squares of four numbers, each ending in
5.

152 = 225, 252 = 625, 352 = 1225, 452 = 2025

Lookiung at these four squares, do you see anythign interesting about their an-
swers. Once you have noticed a pattern, answer the following.

(a) Write down a conjecture that explains that the answer is for the square
of any integer ending in 5.

Solution.

Conjecture. Any integer ending in 5 has a square which ends in 25.

(b) Give four more examples illustrating your conjecture.

Solution.
52 = 25, 552 = 3025, (−15)2 = 225, (−25)2 = 625

(c) Prove your conjecture.

Solution. For any integer ending in 5 would be of the form 10a + 5 for some
integer a. Now, we can show that,

(10a+ 5)2 = (10a)2 + 2 · 10a · 5 + 52 (2.14)

= 100a2 + 100a+ 25 (2.15)

= 100(a2 + a) + 25 (2.16)

Since a is an integer, therefore, a2 + a is also an integer. Thus, the square is of
the form 100k + 25 where k = a2 + a is an integer.

This proves that the square of the number ends in 25.
Hence, proved.

Problem 2.3. For each of the following, prove that it is true.

(a) The sum of an even integer and an odd integer is odd.

Solution. Let a be an even integer and b be an odd integer. By definition,
there exist some integers k and l such that a = 2k and b = 2l + 1.

Now,
a+ b = 2k + 2l + 1 = 2(k + l) + 1

Since k and l are integers, therefore, k + l is also an integer. Thus, for a + b
there exist an integer m = k + l such that a + b = 2m + 1. This proves that
a+ b is odd.

Hence, proved.
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(b) The product of two even integers is even.

Solution. Let a = 2k and b = 2l be two even integers such that k and l are
integers. Now,

a · b = 2k · 2l = 4kl = 2 · (2kl)

Since k and l are integers, therefore, 2kl is also an integers. This proves that
a · b = 2m for some integer m. Hence, proved.

(c) The product of two odd integers is odd.

Solution. Let a = 2k + 1 and b = 2l+ 1 be two odd integers for some integers
k and l. Now,

a · b = (2k + 1) · (2l + 1) (2.17)

= 2k · 2l + 2k · 1 + 1 · 2l + 1 · 1 (2.18)

= 4kl + 2k + 2l + 1 (2.19)

= 2(2kl + k + l) + 1 (2.20)

Here, 2kl + k + l is an integer since k and l are integers. This proves that
a · b = 2m+ 1 for some integer m and thus, a · b is odd.

Hence, proved.

(d) The product of an even integer and an odd integer is even.

Solution. Let a = 2k and b = 2l + 1 be an even and odd integer respectively
for some integers k and l. Now,

a · b = 2k · b = 2 · (kb)

Here, since k and b are integers, we have shown that a · b = 2m for some integer
m and thus, a · b is even.

Hence, proved.

(e) An even integer squaredd is an even integer.

Solution. Let a = 2k be an even integer for some integer k. Now,

a2 = a · a = 2k · 2k = 2 · (2k2)

Here 2k2 is an integer since k is an integer. Thus, we have shown that a2 = 2m
for some integer m and thus, a2 is even.

Hence, proved.

Problem 2.4. For each of the following, prove that it is true.

(a) If n is an even integer, then −n is an even integer.

Solution. Let n = 2k be an even integer for some integer k. Now, −n = −2k =
2 · (−k). Since k is an integer, −k is also an integer. Thus, we have shown that
−n is an even integer. Hence, proved.
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(b) If n is an odd integer, then −n is an odd integer.

Solution. Let n = 2k + 1 be an odd integer for some integer k. Now, −n =
−(2k + 1) = −2k − 1 = −2k − 2 + 1 = 2(−k − 1) + 1.

Since k is an integer, −k − 1 is also an integer. Thus, we have shown that
−n is an odd integer. Hence, proved.

(c) If n is an even integer, then (−1)n = 1.

Solution. Let n = 2k be an even ingger for some integer k. Now,

(−1)n = (−1)2k = ((−1)2)k = 1k = 1

Hence, proved.

Problem 2.5. Prove the following:

(a) If n is odd, then n2 + 4n+ 9 is even.

Solution. Let n = 2k + 1 be an odd integer for some integer k.

n2 = (2k + 1)2 = 4k2 + 4k + 1

4n = 4(2k + 1) = 8k + 4

n2 + 4n+ 9 = 4k2 + 4k + 1 + 8k + 4 + 9 = 4k2 + 12k + 10 = 2(2k2 + 6k + 5)

Since k is an integer, therefore, 2k2 + 6k + 5 is also an integer. Thus, we have
shown that n2 + 4n+ 9 = 2m for some integer m and therefore, n2 + 4n+ 9 is
even.

Hence, proved.

(b) If n is odd, then n3 is odd.

Solution. Let n = 2k + 1 for some integer k. Then,

n3 = (2k + 1)3 = (2k + 1)(4k2 + 4k + 1)

n3 = 8k3 + 8k2 + 2k + 4k2 + 4k + 1 = 8k3 + 12k2 + 6k + 1

n3 = 2(4k3 + 6k2 + 3k) + 1

Hence, proved.

(c) If n is even, then n+ 1 is odd.

Solution. Let n = 2k for some integer k, then n+ 1 = 2k + 1 which is odd by
definition. Hence, proved.

Problem 2.6. Prove the following. For each m and n are integers.
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(a) If m and n are odd, then 5m− 3n is even.

Solution. Let m = 2k + 1 and n = 2l + 1 by definition of odd numbers.

5m−3n = 5(2k+1)−3(2l+1) = 10k+5−6l−3 = 10k−6l+2 = 2(5k−3l+1)

Hence, proved.

(b) If m and n are even, then 3mn is divisible by 4.

Solution. Let m = 2k and n = 2l by definition of even numbers.

3mn = 3 · 2k · 2l = 12kl = 4 · 3kl

By Definition 2.1, 4 | 3mn. Hence, proved.

Problem 2.7. Skipped.

Problem 2.8. Skipped.

Problem 2.9. Skipped.

Problem 2.10. Prove the following. For each m, n and l are integers.

(a) If m | n, then m2 | n2

Solution. By Definition 2.1, since m | n, there exists an integer k such that
n = mk which implies that n2 = m2 · k2. Again by definition 2.1, m2 | n2.
Hence, proved.

(b) If m | n, then m | (7n3 + 13n2 − n)

Solution. We can show that 7n3 + 13n2 − n = n · (7n2 + 13n − 1) which by
definition 2.1 implies that n | (7n3 + 13n2 − n). Now, by Proposition 2.1, since
n | n, we can say that m | (7n3 + 13n2 − n)

(c) If m | n and m | l, then m | (n+ l).

Solution. By Definition 2.1, we get n = ma and l = mb for some integers a
and b. Therefore, n+ l = ma+mb = m(a+ b) which by definition 2.1 implies
that m | (n+ l). Hence, proved.

(d) If 3 | 2n, then 3 | n

Solution. Since gcd(3, 2) = 1, then by Lemma 2.1(2), 3 | n.

(e) If 9 | 6n, then 3 | n.

Solution. By Definition 2.1, for some integer a, 6n = 9a =⇒ 2n = 3a. Thus,
by (d), 3 | n.

(f) If m3 | n and n4 | t then m12 | t.
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Solution. By Definition 2.1, t = n4 ·k and n = m3 · l for some integers k and l.
This implies that t = (m3 · l)4 · k = m12 · l4 · k. Thus, by Definition 2.1, m12 | t.
Hence, proved.

Problem 2.11. Skipped.

Problem 2.12. Prove that if m and n are positive real numbers and m < n,
then m2 < n2. You may use the fact that if a < b and c is positive, then ac < bc.

Solution.

m < n,m > 0 =⇒ m2 < mn (2.21)

m < n, n > 0 =⇒ mn < n2 (2.22)

m2 < mn,mn < n2 =⇒ m2 < n2 (2.23)

Problem 2.13. Define the absolute value of a real number x in this way:

|x| =

{
x if x ≥ 0

−x if x < 0

Prove that |xy| = |x| · |y|.

Solution. Let us take 4 cases:
Case 1. x = 0 or y = 0.
Without loss of generality, let us assume that x = 0.
This implies that xy = 0. Thus, |xy| = 0 and |x| = 0, therefore, |x| · |y| =

0 = |xy|. Hence, proved.
Case 2. x > 0 and y > 0.
This implies that xy > 0 so |xy| = xy, |x| = x and |y| = y. Thus, |xy| =

xy = |x| · |y|. Hence, proved.
Case 3. x < 0 and y < 0.
This implies that xy > 0 so |xy| = xy, |x| = −x and |y| = −y. Thus,

|x| · |y| = (−x) · (−y) = xy = |xy|. Hence, proved.
Case 4. Without loss of generality, x < 0 and y > 0.
This implies that xy < 0. Here, |xy| = −xy, |x| = −x and |y| = y. Therefore,

|x| · |y| = (−x) · y = −xy = |xy|. Hence, proved.

Problem 2.14. Prove that if m, n and t are integers, then at least one of
m−n, n− t and m− t is even. Also write down three example, and show which
of m− n, n− t or m− t are even.

Scratch Work.

m = 1, n = 2, t = 3 =⇒ m−n = −1, n−t = −1,m−t = −2 =⇒ m−t is even.

m = 54, n = 29, t = 20 =⇒ m−n = 25, n−t = 9,m−t = 34 =⇒ m−t is even.

m = 19, n = 45, t = 77 =⇒ m−n = −26, n−t = −32,m−t = −58 =⇒ m−n is even.
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Proof. Since all integers are either even or odd, by The Pigeonhole Principle (
1.1 ), we know that atleast two of m,n or t have the same parity, i.e., two of
them are either both odd or both even.

Lemma 2.2. If a and b are integers that have the same parity then a − b is
even.

Lemma Proof. Case 1. a and b are even.
By definition, a = 2k and b = 2l then a− b = 2k− 2l = 2(k− l). Thus, a− b

is even by definition.
Case 2. a and b are odd.
By definition, a = 2k + 1 and b = 2l + 1 then a− b = (2k + 1)− (2l + 1) =

2k − 2l = 2(k − l). Thus, a− b is even by definition.
Hence, proved.

Since atleast two of m,n or t have the same parity then there is atleast one
even number in m− n, n− t and m− t by Lemma 2.2.

Problem 2.15. Prove the following:

(a) Prove that if n is a positive integer, then 4 divides 1 + (−1)n(2n− 1).

Solution. Given n > 0, we know that n is either even or odd. Let us define
two cases:

Case 1. n is even.
By Definition, n = 2k for some integer k. Therefore, we know that (−1)n =

(−1)2k = ((−1)2)k = (1)k = 1. Thus,

1 + (−1)n(2n− 1) = 1 + 2n− 1 = 2n = 2 · 2k = 4k

Thus, by Defintion 2.1, 4 | 1 + (−1)n(2n− 1)
Case 2. n is odd.
By Definition, n = 2k + 1 for some integer k. Therefore, we know that

(−1)n = (−1)2k+1 = (−1)2k · (−1) = −1 since (−1)2k = 1. Thus, we get,

1 + (−1)n(2n− 1) = 1 + (−1)(2n− 1) (2.24)

= 1− 2n+ 1 = 2− 2n (2.25)

= 2− 2(2k + 1) (2.26)

= 2− 4k − 2 = −4k (2.27)

Thus, by Defintion 2.1, 4 | 1 + (−1)n(2n− 1)
Hence, proved.

(b) Prove that every multiple of 4 is equal to 1 + (−1)n(2n − 1) for some
positive integer n.
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Solution. Let us take a multiple of 4 as 4k. We have two cases:
Case 1. k ≥ 0
Since (−1)2k = 1, we can show,

4k = 2 · 2k = 1 + 2 · 2k − 1 = 1 + (−1)2k(2 · 2k − 1)

If we substitute, n = 2k, we get,

4k = 1 + (−1)n(2n− 1)

Thus, k ≥ 0 satisfies the condition.
Case 2. k < 0 Let us define l = −k which implies that l > 0.

4k = −4l = 2− 4l − 2 = 2− 2(2l + 1)

Let us substitute n = 2l + 1.

4k = 2− 2n = 1− 2n+ 1 = 1− (2n− 1) = 1 + (−1)(2n− 1)

Since (−1)2l = 1 =⇒ (−1)2l+1 = (−1)n = −1, we get that

4k = 1 + (−1)n(2n− 1)

Thus, proved.

Problem 2.16. Skipped.

Problem 2.17. Skipped.

Problem 2.18. Skipped.

Problem 2.19. Let a and b be positive integers, and suppose r is the nonzero
remainder when b is divided by a. Prove that when −b is divided by a, the
remainder is a− r.

Solution. By Theorem 2.1, we can say that b = aq + r such that 0 ≤ r < a.
But we are given that r is nonzero, therefore, 0 < r < a. Now,

−b = −aq − r = −a− aq + a− r = a(−1− q) + (a− r)

Since 0 < r < a, we can show that

r < a =⇒ a− r > 0, r > 0 =⇒ r > a− a =⇒ a > a− r

Thus, we have 0 < a − r < a. By applying Theorem 2.1, we get that the
remainder on dividing −b by a is a− r.

Hence, proved.

Problem 2.20. Determine the remainder when 3302 is divided by 28, and show
without a calculator how you found the answer.
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Solution.

3302 = 32 · 3300 (mod 28) (2.28)

= 9 · (33)100 (mod 28) (2.29)

= 9 · 27100 (mod 28) (2.30)

(2.31)

Since 27 ≡ −1 (mod 28), then by Proposition 2.2(3), we get that 27100 ≡
(−1)100 (mod 28) since exponentiation is just repeated multiplication.

3302 = 9 · (−1)100 (mod 28) (2.32)

3302 = 9 · 1 (mod 28) (2.33)

3302 = 9 (mod 28) (2.34)

Thus, the answer is 9.

Problem 2.21. Assume that a, b, c, d and n are integers. Also assume that
a ≡ b (mod n) and c ≡ d (mod n). Prove the following

(i) a− c ≡ b− d (mod n)

Solution. By Definition 2.3, we get that n | (a−b) and n | (c−d) which implies
that a− b = nk and c− d = nl for some integers k and l. Now,

(a− c)− (b− d) = a− c− b+ d = (a− b)− (c− d) = nk − nl = n(k − l)

Thus, n | ((a− c)− (b− d)) and by Definition 2.3, a− c ≡ b− d (mod n)

(ii) a · c ≡ b · d (mod n)

Solution. As shown above, we have a−b = nk and c−d = nl for some integers
k and l. This gives us a = b+ nk and c = d+ nl. Now,

a · c = (b+ nk) · (d+ nl) (2.35)

= bd+ bnl + dnk + n2kl (2.36)

= bd+ n(bl + dk + nkl) (2.37)

=⇒ (ac− bd) = n(bl + dk + nkl) (2.38)

=⇒ n | (ac− bd) (2.39)

Thus, by Definition 2.3, ac ≡ bd (mod n).

Problem 2.22. Assume that a is an integer and p and q are distint primes.
Prove that if p | a and q | a, then pq | a.

Solution. By Definition 2.1, we get that a = pk for some integer k. Now,
q | a =⇒ q | pk.

Since p and q are distinct primes their only factors are 1, p and 1, q respec-
tively. Therefore, gcd(p, q) = 1. Thus, by Lemma 2.1(2), we get q | k.

Thus, by Definition 2.1, k = ql for some integer l and we get that a = pql
which by Definiton 2.1 implies that pq | a.

Hence, proved.
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Problem 2.23. Prove that if abc is a multiple of 10 then atleast one of ab, bc
or ac is a multiple of 10.

Solution. By Proposition 2.1, since 2 | 10 and 5 | 10, we get that 2 | abc and
5 | abc.

Now, by Lemma 2.1(3), we get that atleast one of the following is true: 2 | a
or 2 | b or 2 | c since 2 is a prime.

Similarly, since 5 is a prime atleast one of these is true: 5 | a or 5 | b or 5 | c.
There are two cases:
Case 1. 2 and 5 divide the same number among a, b or c.
Without loss of generality, let us assume that 2 | a and 5 | a. Then by

previous problem, we can say that 10 | a which implies a = 10k for some integer
k.

Since a = 10k, we have ab = 10kb which by Definition 2.1 means 10÷ ab.
Case 2. 2 and 5 divide different numbers among a, b or c.
Without loss of generality, let us assume that 2 | a and 5 | b. Thus, by

Definition 2.1, we have a = 2k and b = 5l for some integers k and l.
Now, ab = 10kl which by Definition 2.1 means 10 | ab.
Thus, in both cases there exists atleast one number among ab, bc or ac di-

visible by 10.
Hence, proved.

Problem 2.24. Assume that a, b and c are integers and a2 | b and b3 | c. Prove
that a6 | c.

Solution. By Definition 2.1, we have b = a2 · k and c = b3 · l for some integers
k and l. Thus,

c = b3 · l = (a2 · k)3 · l = a6 · k3 · l

Hence, by Definiton 2.1, a6 | c. Hence, proved.

Problem 2.25. Prove that for every integer n, either n2 ≡ 0 (mod 4) or n2 ≡ 1
(mod 4).

Scratch Work.

n2 = 4k =⇒ 4 | n2 =⇒ 2 | n =⇒ n = 2l

n2 = 4k + 1 =⇒ 4 | (n2 − 1) | 4 | (n− 1)(n+ 1)

Since n− 1 and n+1 are 2 apart, they are either both odd or both even. Since
product of odd numbers is always odd, they must be even. Thus, n is odd.

Here, we see that if n2 ≡ 0 (mod 4) then n must be even. And otherwise n
must be odd.

Solution. Let us take two cases:
Case 1. n is even.
By Definition, n = 2k for some integer k. Thus, n2 = 4k2 which by Definition

2.1 and 2.3 means that 4 | n2 =⇒ n2 ≡ 0 (mod 4).
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Case 2. n is odd.
By Definition, n = 2k + 1 for some integer k. Thus,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1

=⇒ n2 − 1 = 4(k2 + k)

Thus, by Definition 2.3, we get that n2 ≡ 1 (mod 4).
Hence, proved.

Problem 2.26. Skipped.

Problem 2.27. The Pythagorean theorem involves integers a, b and c for which
a2 + b2 = c2. Prove that if three integers satisfy this relationship, then either a
or b will be divisible by 3.

Scratch Work. For every integer n, we know n (mod 3) is either 0, 1 or 2.
This implies that n2 (mod 3) is either 0, 1 or 4 which is the same as 0 or 1.

Thus, a2, b2 and c2 are either 0 or 1 modulo 3.
Let us assume that both a2 and b2 are 1 modulo 3. Then, c2 must be 2

modulo 3 which is a contradiction. Therefore, either a2 or b2 must be divisible
by 3 which implies either a or b must be divisible by 3.

Solution.

Lemma 2.3. For any integer n, either n2 ≡ 0 (mod 3) or n2 ≡ 0 (mod 3).

Proof. For any integer n, we have 3 cases:
Case 1. n ≡ 0 (mod 3) =⇒ n2 ≡ 0 (mod 3) by Proposition 2.2(3).
Case 2. n ≡ 1 (mod 3) =⇒ n2 ≡ 1 (mod 3) by Proposition refmodprop(3).
Case 3. n ≡ 2 (mod 3) =⇒ n2 ≡ 4 ≡ 1 (mod 3) by Proposition 2.2(3).
Hence, proved.

Since a and b are integers, by Lemma 2.3, a2 and b2 are either 0 or 1 modulo
3.

Let us assume both a2 and b2 are 1 modulo 3. Thus, by Proposition 2.2(3),
we get that c2 ≡ a2 + b2 ≡ 2 (mod 3).

But by Lemma 2.3, we know that c2 ̸≡ 2 (mod 3). This is a contradiction.
Therefore, either a2 or b2 is congruent to 0 modulo 3 which by Definition 2.3
means that either 3 | a2 or 3 | b2.

Without loss of generality, let us assume that 3 | a2. By Lemma 2.1(3), since
3 | a · a and 3 is prime, we get either 3 | a or 3 | a which impiles 3 | a.

Therefore, either a or b must be divisible by 3. Hence, proved.

Problem 2.28. Skipped.

Problem 2.29. Suppose that a and b are positive integers, and gcd(a, b) = d.
Prove that a | b if and only if d = a. To do this, here are the two things you
should prove:

(i) If a | b, then d = a.
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Solution. Since a | a and a | b, a is a common divisor of a and b.
For any other common divisor d′ > 0, we must have d′ | a. Thus, a = d′k

for some integer k. Since a and d′ are positive, then k must be positive as well.
This implies that d′ = a

k where k is a positive intger. Hence, d′ ≤ a.
Thus, a is greater than any other common divisor of a and b which by

Definition 2.2 implies that d = a.
Hence, proved.

(ii) If d = a, then a | b.

Solution. Since a is the greatest common divisor of a and b, then by Definition
2.2, a | b.

Hence, proved.

Problem 2.30. Prove that m ≡ n (mod 15) if and only if m ≡ n (mod 3) and
m ≡ n (mod 5). To do that, prove the following,

(a) If m ≡ n (mod 15), then m ≡ n (mod 3) and m ≡ n (mod 5)

Solution. By Defintion 2.3, we have

15 | (m− n) =⇒ m− n = 15k (2.40)

=⇒ m− n = 5 · 3k =⇒ 5 | (m− n) (2.41)

=⇒ m− n = 3 · 5k =⇒ 3 | (m− n) (2.42)

By Definition 2.3, m ≡ n (mod 3) and m ≡ n (mod 5).

(b) If m ≡ n (mod 3) and m ≡ n (mod 5), then m ≡ n (mod 15).

Solution. By Definition 2.3, we have

3 | (m− n) =⇒ m− n = 3k (2.43)

5 | (m− n) =⇒ 5 | 3k (2.44)

By Lemma 2.1, since gcd(3, 5) = 1, we get 5 | k. Therefore, k = 5l for some
integer l and m− n = 15l =⇒ 15 | (m− n).

Thus, by Definition 2.3, m ≡ n (mod 15).
Hence, proved.

Problem 2.31. Suppose that a and b are positive integers and d = gcd(a, b).

(a) Prove that gcd(ad ,
b
d ) = 1.

Solution. Let g = gcd(ad ,
b
d ). Now, since g is a divisor, we get

a

d
= gk =⇒ a = dgk

b

d
= gl =⇒ b = dgl
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for some integers k and l.
Now, by Definition 2.1, we know that dg | a and dg | b. Therefore, dg is a

common divisor of a and b.
Since d is the greatest common divisor of a and b, we can say that

dg ≤ d =⇒ g ≤ 1

Since g is a greatest common divisor for a
d and b

d , it must be atleast 1 which
means g ≥ 1.

The only number that satisfies both these conditions is g = 1.
Hence, proved.

(b) Prove that gcd(an, bn) = dn for every positive integer n.

Solution. Since d is the greatest common divisor of a and b, we know that
a = dk and b = dl for some integers k and l.

This implies that an = dnk and bn = dnl. Therefore, by Definition 2.1 and
2.2, dn is a common divisor of an and bn.

Let us say g = gcd(an, bn). Now, by Theorem 2.2, we know that g =
anx+ any for some integers x and y. This implies that

g = n · (ax+ ay) =⇒ n | g

Thus, we can say that g = nq for some integer q. Now, by Definition 2.1
anb 2.2, we have

an = nqk′, bn = nql′ =⇒ a = qk′, b = ql′

Thus, q is a common divisor of a and b. Since d is the greatest common divisor
of a and b, we have

q ≤ d =⇒ qn ≤ dn =⇒ g ≤ dn

But also, dn is a common divisor of an and bn, therefore, dn ≤ gcd(an, bn).
The only way both these conditions are satisified is when dn = gcd(an, bn).

Hence, proved.

Problem 2.32. Assume that a, b and c are integers for which gcd(a, b) = 1 and
gcd(a, c) = 1. Prove that gcd(a, bc) = 1.

Solution. Let g = gcd(a, bc). Now, by Definition 2.1 and 2.2, we have g | a
and g | bc.

By Bezout’s Identity ( 2.2 ), we know that for some integers k, l, m and n,
we have

ak + bl = 1 =⇒ bl = 1− ak (2.45)

am+ cn = 1 =⇒ cn = 1− am (2.46)

=⇒ bl · cn = (1− ak) · (1− am) (2.47)

=⇒ bc · ln = 1− ak − am+ a2km (2.48)

=⇒ a · (k +m− akm) + bc · ln = 1 (2.49)
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Thus, we have ax+ bcy = 1 for some integers x and y. Since gcd(a, bc) must
be the smallest positive integer with this property, by Bezout’s Identity ( 2.2 ,
See Proof ), we get gcd(a, bc) ≤ 1.

But also, since 1 is a common divisor of a and bc, we have gcd(a, bc) ≥ 0.
The only value that satisfies this is gcd(a, bc) = 1.
Hence, proved.

Problem 2.33. Skipped.

Problem 2.34. If gcd(a, b) = 1, then we say that a
b is in reduced form. Prove

that if n is an integer then
21n+ 4

14n+ 3

is in reduced form.

Solution. Here, we only need to show that gcd(21n+ 4, 14n+ 3) = 1.
We can easily show that

3 · (14n+ 3) + (−2) · (21n+ 4) = 42n+ 9− 42n− 8 = 1

But since gcd(21n + 4, 14n + 3) is the smallest positive integer of the form
(21n+ 4)x+ (14n+ 3)y, we get that gcd(21n+ 4, 14n+ 3) ≤ 1.

But also, 1 is a common divisor of both so gcd(21n+ 4, 14n+ 3) ≥= 1.
This implies that gcd(21n+ 4, 14n+ 3) = 1.
Hence, proved.

Problem 2.35. Prove that 3 | (4n − 1) for any n ∈ N in two different ways.
(a) First, prove it using modular arithmetic.

Solution. Since 4 ≡ 1 (mod 3) and n is an integer greater than or equal to 1,
we can say that 4n ≡ 1n (mod 3) by repeated application of Proposition 2.2(3)
as exponentiation is just repeated multiplication.

This gives us 4n ≡ 1 (mod 3) for any n ∈ N. By Definition 2.3, we get that
3 | (4n − 1). Hence, proved.

(b) Second, prove it using the fact

xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 + ...+ xyn−2 + yn−1)

for any real numbers x and y.

Solution. Since 4 and 1 are real numbers, we can show that

4n − 1n = (4− 1)(4n−1 + 4n−2 · 1 + ...+ 4 · 1n−2 + 1n−1) (2.50)

=⇒ 4n − 1 = 3 · (4n−1 + 4n−2 · 1 + ...+ 4 · 1n−2 + 1n−1) (2.51)

Since 4 and 1 are integers, the expression in parenthesis is also an integer. Thus,
by Definition 2.1, we have 3 | (4n − 1). Hence, proved.

Problem 2.36. Prove that every odd integer is a difference of two squares.
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Scratch Work.
5 = 32 − 22

7 = 42 − 32

9 = 52 − 42

Here, we see a pattern that 2k + 1 = (k + 1)2 − k2.

Solution. Let 2k + 1 be an odd integer. Here, we can show that

(k + 1)2 − k2 = k2 + 2k + 1− k2 = 2k + 1

Thus, 2k + 1 is difference of squares of k + 1 and k. Hence, proved.

Problem 2.37. Prove that for every positive integer n, there exist a string of
n consecutive intgers none of which are prime.

Solution. If we take the following numbers:

(n+ 1)! + 2, (n+ 1)! + 3, (n+ 1)! + 4, ..., (n+ 1)! + (n+ 1)

Here, the first number must be divisible by 2, the second number must be
divisible by 3 and so on. There are in total n integers in this sequence, all of
which have a divisor other than 1 and itself.

Hence, proved.

Problem 2.38. Skipped.

Problem 2.39. Suppose n is an integer. Prove that if n2 | n, then n is either
−1, 0 or 1.

Solution. Since n2 | n, we get that n = kn2 for some integer k. Thus,

n = kn2 =⇒ kn2 − n = 0 =⇒ n(kn− 1) = 0

Therefore, either n = 0 or k = 1
n . Since k is an integer, the only value of n for

which 1
n is an integer is 1 and −1.

Thus, n is either −1, 0 or 1.
Hence, proved.

Problem 2.40. As Evelyn Lamb pointed out,

Every prime larger than 3 is precisely 1 off from a multiple of 3!.

The above statement is true whether the ”!” symbol is an exclamation or a
factorial. Prove this.

Solution. For every prime p > 3, we must have p ≡ 1 (mod 3) or p ≡ 2
(mod 3) since it cannot be divisible by 3.

Case 1. p ≡= 1 (mod 3) =⇒ 3 | (p− 1) by Definition 2.3.
Case 2. p ≡= 2 (mod 3) =⇒ p + 1 ≡ 3 ≡ 0 =⇒ 3 | (p + 1) by Definition

2.3.
Hence, proved.
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For every p > 3, we must have p ∈ 1, 2, 3, 4, 5 (mod 6) since p (mod 6)
cannot be zero.

Case 1. p ≡ 1 (mod 6) =⇒ 6 | (p − 1) =⇒ 3 | (p − 1) by Definition 2.3
and Proposition 2.1 since 3 | 6.

Case 2. p ≡ 2 =⇒ 6 | (p − 2) =⇒ 2 | (p − 2) =⇒ 2 | p by Definition 2.3
and Proposition 2.1 and Lemma 2.2(1), thus, p is not prime.
This case is not possible.

Case 3. Similar to Case 2, p ≡ 3 =⇒ 6 | (p− 3) =⇒ 3 | (p− 3) =⇒ 3 | p,
thus, p is not prime.
This case is not possible.

Case 4. p ≡ 4 =⇒ 6 | (p − 4) =⇒ 4 | (p − 4) =⇒ 4 | p, thus, p is not
prime.
This case is not possible.

Case 5. p ≡ 5 (mod 6) =⇒ 6 | (p− 5) =⇒ 6 | (p+ 1) =⇒ 3 | (p+ 1) by
Definition 2.3 and Lemma 2.2(1).

Problem 2.41. Prove that n ≥ 2 is not prime if and only if n = st for some
integers s and t where 1 < s, t < n.

Solution. Case 1. If n ≥ 2 is not prime, then n = st for some integers s and t
where 1 < s, t < n.

Since n is not prime, there must be a positive integer s such that s | n, s ̸= 1
and s ̸= n by Definition 2.4.

Now, since s is a positive integer and s ̸= 1, we must have s > 1.
Since s | n, by Definition 2.1, we have n = st for some integer t. Since both

s and n are positive, t must be positive as well.
Now, since s ̸= n, therefore, t ̸= 1 which implies t > 1. Also, since t > 1, we

must have s = n
t < n. Similarly, since s > 1, we must have t = n

s < n.
Thus, we have n = st for some integers s and t such that 1 < s, t < n.
Case 2. If for some n ≥ 2, n = st for some integers s and t where 1 < s, t < n,

then n is not prime.
By Definition 2.1, we have s | t, s > 0, s ̸= 1 and s ̸= n. Therefore, by

Definition 2.4, n is not a prime number.
Hence, proved.

Problem 2.42. Skippped.
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Chapter 3

Sets

Definition 3.1. A set is ann unordered collection of distinct objects, which are
called elements. If x is an element of a set S, we write x ∈ S. This is read ”x
in S”.

Definition 3.2. Common Sets:

• The set of natural numbers, denoted N, is the set {1, 2, 3, ...}.

• The set of integers, denoted Z, is the set {...,−3,−2,−1, 0, 1, 2, 3, ...}.

• The set without any elements, denoted ϕ or {}, is called the empty set.

Definition 3.3. The set

Q = {a
b
: a, b ∈ Z, b ̸= 0}

is called the set of rational numbers.

The set of real numbers, denoted R, is more difficult to define, so for now
rely on your intuition. (Note to Self: We will define this in Real Analysis. )

Definition 3.4. Suppose A and B are sets. If every element in A is also an
element of B, then A is subset of B, which is denoted A ⊆ B.

Strategy To Prove A ⊆ B: We can start with some element x ∈ A and the
condition for A. Now, we can apply logic and reasoning to show that this is the
same as condition for B. Therefore, x ∈ B.

Since we chose a arbitrary element of A, therefore, this is true for all elements
of A. Hence, proved. Moreover, we are not allowed to assume anything about x
beyond that it is in A. This is the reason that we can say that since it applies
to an arbitrary element of A, therefore, it applies to every element of A.

Notice that if A = B then A ⊆ B. In the case, A ⊆ B and A ̸= B, we say
that A is a proper subset of B, denoted by A ⊂ B. But we will not use this
notation in this text.
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Strategy To Prove A = B: To prove this, you will have to show that:

1. Every element of A is also in B which means A ⊆ B.

2. Every element of B is also in A which means B ⊆ A.

Definition 3.5. Set Operations:

• The union of sets A and B is the set A ∪B = {x : x ∈ A or x ∈ B}.

• The intersection of sets A and B is the set A∩B = {x : x ∈ A and x ∈ B}.

• Likewise, if A1, A2, A3, ..., An are all sets, then the union of all of them is
the set A1 ∪A2 ∪A3 ∪ ... ∪An = {x : x ∈ Ai for some i}. This set is also
denoted as

n⋃
i=1

Ai

• Likewise, if A1, A2, A3, ..., An are all sets, then the intersection of all of
them is the set A1 ∩ A2 ∩ A3 ∩ ... ∩ An = {x : x ∈ Ai for all i}. This set
is also denoted as

n⋂
i=1

Ai

Definition 3.6 (Subtraction and Complements). Assume A and B are sets and
x ̸∈ Bmeans that x is not an element of B.

• The subtraction of B from A is A
B = {x : x ∈ A and x ̸∈ B}.

• If A ⊆ U , then U is called a universal set of A. The complement of A in
U is Ac = U
A.

Definition 3.7 (Power Sets and Cardinality). Assume A is a set:

• The power set of A is P(A) = {X : X ⊆ A}.

• The cardinality of A is the number of elements ion A, and is denoted |A|.

Definition 3.8 (Cartesian Product). Assume A and B are sets. The Cartesian
Product of A and B is A×B = {(a, b) : a ∈ A and b ∈ B}.

Proposition 3.1. Suppose A and B are sets. If P(A) ⊆ P(B), then A ⊆ B.

Proof. Assume x ∈ A be an arbitrary element of A.
Then by Definition 3.7, {x} ⊆ A and {x} ∈ P(A). Since P(A) ⊆ P(B), by

Definition 3.4, we get that {x} ∈ P(B). Now, by Definition 3.7, we get that
{x} ⊆ B. And finally, by Definition 3.4, we get that x ∈ B.

Hence, proved that any arbitrary element of A is also in B. Therefore,
A ⊆ B.
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Theorem 3.1 (De Morgan’s Laws). Suppose A and B are subsets of a universal
set U . Then,

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc
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Exercises

Problem 3.1. Skipped.

Problem 3.2. Suppose A and B are two boxes. Describe the following in terms
of boxes: A
B, P(A) and |A|.

Solution. A
B: This is a box with all the objects in A that are not in B.

P(A): This is a box with many boxes such that each box in this box has
objects from A.

|A|: Number of objects in A.

Problem 3.3. Skipped.

Problem 3.4. Skipped.

Problem 3.5. Skipped.

Problem 3.6. Skipped.

Problem 3.7. Skipped.

Problem 3.8. Skipped.

Problem 3.9. Skipped.

Problem 3.10. The set {5a + 3b : a, b ∈ Z} is equal to a familiar set. By
examining which elements are possible, determine the familiar set.

Solution. For a = b = 0, we get 5a+ 3b = 0.
For a = −1 and b = 2, we get 5a+ 3b = −5 + 6 = 1.

Since we have 0 and 1, we can build any integers k by setting a = −1 ·k and
b = 2 · k which gives us −5k + 6k = k.

Thus, our set is the set of integers, Z.
It is trivial that all elements of the given set are integers to the given set is

a subset of integers.
Now, for any x ∈ Z, we can take a = −x and b = 2x since −x, 2x ∈ Z and

get 5a+ 3b = −5x+ 6x = x which is an element of the given set. Thus, Z is a
subset of the given set.

Therefore, both sets are equal.

Problem 3.11. Suppose A,B and C are sets. Is there a difference between
(A×B)× C and A× (B × C)? Explain your answer.
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